

Advanced Accelerator Applications

Dr. Denis E. Beller
University Programs Leader
Los Alamos National Laboratory

LA-UR-02-1756 Approved for public release; distribution is unlimited.

Through the AAA Program, the U.S. Joins International Efforts

Partitioning & Transmutation along with advanced nuclear fuel cycles

Systems Modeling projects future U.S. inventory of used fuel

- ATW Roadmap: 87,000 tn, 2030s
- Life extensions: 144,000 tn, 2050s
- NEI Vision 2020: 120,000 tn 2030s
 >180,000 tn 2050s

What do we do with it?

Options for disposal of nuclear "waste"

- once-through fuel "cycle," or
- reduce, reuse, and recycle
 - MOX-fueled LWRs or HTGCR
 - Accelerator-driven transmutation
 - Fast reactors (includes breeders)

Today's option: "once-through" fuel "cycle"

Direct disposal faces many challenges

- Political opposition
- Public acceptance
- Licensing and regulatory concerns
- Uncertainty in projecting out for hundreds of thousands of years

Transmutation of "waste" offers potential solutions to these challenges

Transmutation means Nuclear Transformation

- changes the contents of the nucleus (protons and/or neutrons)
- natural (decay) or driven
- since before World War II it's Not Hard!

Turn lead into gold? Just need a source of neutrons

Most long-term hazards are due to 1.1% of the used nuclear fuel

LA-UR-02-1756 - #8

Pu and MA are fissioned, excess neutrons convert I and Tc to stable isotopes

Initial Materials

The challenge is to transmute effectively:

thorough, clean, safe, and cost-effective

- near 100% conversion
- low losses
- accident free
- reduce waste toxicity and volume
- minimal impact to cost of the nuclear fuel cycle

AAA Mission: conduct research, development and demonstration

- transmutation of used nuclear fuel
- test bed to conduct nuclear R&D
- capability of producing other isotopes
- nuclear infrastructure and nuclear future

The Transmutation Strategy:

- Partition used nuclear fuel
- Discard uranium and stable elements
- Form transmutation fuel from longlived radionuclides
- Transmute long-lived radionuclides into short-lived or stable isotopes
- Manage remaining short-lived wastes for just a few hundred years

ATW Technology Can Lead to Reductions of Nuclear Waste

Accelerator

Transmutation of

Waste

Byproducts:
 isotopes
 electricity
 \$ billions

TBD: reduction of waste volume and radio-toxicity

67,000 tn of U (recycle)

Less stored waste

- Significantly reduced plutonium and other TRU
- Major reduction of longlived fission products

Repository

ATW can reduce projected doses, but defense waste reduces ATW impact

Impact on dose is reduced to about a factor of 10

Figure 5.3. Individual Dose Rate (Adult, 20 km Distance, All Exposure Pathways) Comparison for the First Million Years after Repository Closure

To do this, ATW includes three major technology elements:

- 1) Separations & Waste Forms
 - -aqueous or molten salt chemistry
 - -glass, ceramic, or metal waste forms
- 2) Accelerators
 - -linacs or cyclotrons
- 3) Subcritical Transmuters
 - -fast, metal, gas, molten salt, thermal

separations series Waste forms

Separations processes are being investigated at ANL and LANL

- Aqueous: UREX
 - may be preferred for separation of used LWR fuel
 - does not separate Pu from MA
- Pyro-processing
 - similar to IFR
 - for used ATW fuel
- Others (FLEX,)

ATW separations provide stable waste forms

- Problem isotopes are separated, then
- some are transmuted
- while others can be combined to create long-lived, non-hazardous waste forms
 - optimum repository performance impact
 - combine some with massive amounts of zirconium
 - combine some in vitrified waste

Accelerators will produce powerful beams of high-energy particles

- 600 to 1000 MeV protons
- mA of current
- product is MW of beam power
- big and expensive
- how to turn that into neutrons for spallation?

Spallation & evaporation produce neutrons

- protons strike heavy nuclei
- knocked-out particles create a 'cascade'
- residual nuclei 'cool' off by evaporation

Heavier target materials yield more neutrons per proton

Transmuters Transmuters Blankets)

ATW beam expansion and spallation target modules in ATW transmuter

For the transmuter, the major challenge is fuel development

ATW subcritical capability adds flexibility

- Nuclear systems have always operated "critical"
- Subcritical capability adds flexibility
 - Can drive systems with low fissile content or high non-fissile burden
 - operate with fuel that could make critical systems unstable
 - compensate for large uncertainties or reactivity swings

Subcritical operation option addresses fuel cycle issues

- jump-start systems with insufficient fissile content
- support advanced fuel cycles by transmuting wastes
- close-down cycles with depleted fissile content

ATW Systems and Scenarios

Partitioning & Transmutation are evaluated versus four goals

- Reduce toxicity of used nuclear fuel within lifetime of manmade containers
- Reduce long-term dose to inhabitants by transmuting mobile elements
- Deplete actinides to reduce attractiveness
- Improve prospects for a nuclear future

Reduce toxicity of spent fuel within lifetime of man-made containers and/or barriers (a few millennia)

Reduce maximum long-term dose

- to future inhabitants by
 - transmuting mobile elements or
 - placing into leach-resistant waste forms

Compare vs. natural background dose

Deplete content/mix of actinides in waste stream

 Make it less desirable/attractive than alternate sources of fissile materials

Alternate Sources?

Advanced Accelerator Application

Improve prospects for nuclear energy

Integrate over time & across borders

Simpler, cheaper

repositories

Near-term proliferation risk minimized marginal cost impact

Near-term ES&H burdens manageable

Why Invest in the AAA Program?

- Public support
- Good resource stewardship
- Augments current waste management strategy
- Brings U.S. back to forefront in nuclear science and technology
- Spin-off technologies, e.g. medical isotopes, may be as significant as the transmutation of waste

Cons (why not invest?)

- Cost--worthwhile R&D involves significant investment
- Other transmutation concepts exist
 - difficult to implement, less flexible, and narrower in scope
- Uncertainty--success of new technologies always entails uncertainty
- Proliferation?
 - (R&D should enlighten us)

AAA mission requires optimum use of nuclear infrastructure

AAA

Transmutation System Proof-of-Performance People: Requires Firm Base of **Expertise and Facilities**

Laboratories, International, Universities, **Industry**

Existing Facilities:

U.S & International **New test** facility:

ADTF

Universities are key to AAA success

- Directed university research
- Fellowship Program
- UNLV & ISU Programs
- future University Research Program?
- how big is it?
 - -~\$4 M FY01
 - ->\$7 M FY02

Potential for ten universities, \$10 M, more than 100 students

- FY01: UT Austin, UC Berkeley, U of Mich, UNLV
- FY02: add NCSU, Idaho State
- UNLV: \$4.5 M, 15 research projects, 3 new faculty, ~50 students
- Ten more AAA Fellowships
- Competitive URP in FY02?
- Other

Collaboration with the CEA, seven major work packages:

- WP 1: ADS Safety
- WP 2: Dedicated (Non-fertile) fuels
- WP 3: Target and Materials
- WP 4: Physics
- WP 5: Facilities
- WP 6: System Studies
- WP 7: Separations

Facilities to provide Proof of Principle and Proof of Performance

Approximate Time Scale:

3 to 5 years

10 to 20 years

Scaled experiments: LANSCE, TREAT, MASURCA, MTL, ATR, PHENIX, BOR60, Blue Room, Hot Cells

ADTF plus fuel fab and separations facilities

Technology Readiness Level Scale:

1 2 3 4 5 6 7 8 9

Analyses based on basic principles

NATIONAL LABORATORY

Component and phenomenological testing in relevant environment

System and sub-system testing in prototypic environment

A-UR-02-1756 - #44

Advanced Accelerator Application

Conceptual ADTF layout

Advanced Accelerator Applications

Modular concept for target and subcritical multiplier

Experiment Cell

Multiplier Assembly

Target Assembly

Advanced Accelerator Applications

ADTF benefits of the AAA Program

- Essential reactor constraints can be relaxed in subcritical systems
- Both steady state and transient modes
- Accelerator selection optimizes neutron production and proton range
- Drives 80-180 MW_{thermal} subcritical blanket
- Demonstration of integrated system

The AAA Program will provide a sound foundation to ...

- Assess options for transmutation
- Develop a test bed for nuclear R&D
- Develop isotope production technology
- Strengthen nuclear infrastructure
- Improve prospects of a nuclear future

